Bibliography and References¶
Foundational Textbooks¶
General Quantitative Finance¶
- Hull, J. C. (2022). Options, Futures, and Other Derivatives (11th ed.). Pearson.
- Standard textbook covering fundamental derivatives pricing theory
-
Black-Scholes-Merton framework, Greeks, basic numerical methods
-
Shreve, S. E. (2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer.
- Rigorous mathematical foundation for continuous-time finance
-
Risk-neutral pricing, martingale measures, change of numeraire
-
Björk, T. (2009). Arbitrage Theory in Continuous Time (3rd ed.). Oxford University Press.
- Complete arbitrage theory framework
- Term structure models, martingale methods
Advanced Topics¶
- Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. Wiley.
- Volatility smile modeling, SABR model, local volatility
-
Market microstructure of volatility
-
Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer.
- Comprehensive treatment of Monte Carlo methods
-
Variance reduction, quasi-Monte Carlo, American options
-
Cont, R., & Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC.
- Lévy processes, jump-diffusion models
-
Variance gamma, Merton, Kou models
-
Brigo, D., & Mercurio, F. (2006). Interest Rate Models - Theory and Practice (2nd ed.). Springer.
- Comprehensive interest rate modeling
-
Short rate models (Vasicek, CIR, Hull-White), HJM framework
-
Gregory, J. (2015). The xVA Challenge: Counterparty Credit Risk, Funding, Collateral, and Capital (3rd ed.). Wiley.
- CVA, DVA, FVA, MVA, KVA calculations
- Exposure modeling, wrong-way risk
Seminal Research Papers¶
Black-Scholes Framework¶
- Black, F., & Scholes, M. (1973). "The Pricing of Options and Corporate Liabilities." Journal of Political Economy, 81(3), 637-654.
- Original Black-Scholes formula derivation
-
Foundation of modern option pricing theory
-
Merton, R. C. (1973). "Theory of Rational Option Pricing." Bell Journal of Economics and Management Science, 4(1), 141-183.
- Extended Black-Scholes framework
- Rigorous continuous-time derivation
Stochastic Volatility¶
-
Heston, S. L. (1993). "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options." Review of Financial Studies, 6(2), 327-343.
- Heston model with semi-analytical solution
- Characteristic function approach
- Implementation:
src/neutryx/models/heston.py
-
Hagan, P. S., Kumar, D., Lesniewski, A. S., & Woodward, D. E. (2002). "Managing Smile Risk." Wilmott Magazine, September, 84-108.
- SABR (Stochastic Alpha Beta Rho) model
- Asymptotic expansion for implied volatility
- Implementation:
src/neutryx/models/sabr.py
-
Bayer, C., Friz, P., & Gatheral, J. (2016). "Pricing under rough volatility." Quantitative Finance, 16(6), 887-904.
- Rough Bergomi model with fractional Brownian motion
- Empirical evidence for rough volatility (H ≈ 0.1)
- Implementation:
src/neutryx/models/rough_vol.py
Local Volatility¶
-
Dupire, B. (1994). "Pricing with a Smile." Risk, 7(1), 18-20.
- Dupire's local volatility formula
- Forward Kolmogorov equation approach
- Implementation:
src/neutryx/models/dupire.py
-
Derman, E., & Kani, I. (1994). "Riding on a Smile." Risk, 7(2), 32-39.
- Alternative derivation of local volatility
- Implied binomial tree construction
Jump-Diffusion Models¶
-
Merton, R. C. (1976). "Option Pricing when Underlying Stock Returns are Discontinuous." Journal of Financial Economics, 3(1-2), 125-144.
- Merton jump-diffusion model
- Poisson jump process with lognormal jump sizes
- Implementation:
src/neutryx/models/jump_diffusion.py
-
Kou, S. G. (2002). "A Jump-Diffusion Model for Option Pricing." Management Science, 48(8), 1086-1101.
- Double exponential jump-diffusion model
- Asymmetric jumps with exponential distributions
- Implementation:
src/neutryx/models/kou.py
-
Madan, D. B., Carr, P., & Chang, E. C. (1998). "The Variance Gamma Process and Option Pricing." European Finance Review, 2(1), 79-105.
- Variance gamma model as pure jump Lévy process
- Gamma time change representation
- Implementation:
src/neutryx/models/variance_gamma.py
Interest Rate Models¶
-
Vasicek, O. (1977). "An Equilibrium Characterization of the Term Structure." Journal of Financial Economics, 5(2), 177-188.
- Mean-reverting Gaussian short rate model
- Analytical bond pricing formulas
- Implementation:
src/neutryx/models/vasicek.py
-
Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). "A Theory of the Term Structure of Interest Rates." Econometrica, 53(2), 385-407.
- CIR model with square-root diffusion
- Non-negative interest rates, Feller condition
- Implementation:
src/neutryx/models/cir.py
-
Hull, J., & White, A. (1990). "Pricing Interest-Rate-Derivative Securities." Review of Financial Studies, 3(4), 573-592.
- Extended Vasicek with time-dependent parameters
- Calibration to initial term structure
- Implementation:
src/neutryx/models/hull_white.py
Numerical Methods¶
-
Carr, P., & Madan, D. B. (1999). "Option Valuation using the Fast Fourier Transform." Journal of Computational Finance, 2(4), 61-73.
- FFT-based option pricing using characteristic functions
- Fast computation of option prices across strikes
- Implementation:
src/neutryx/engines/fourier.py
-
Fang, F., & Oosterlee, C. W. (2008). "A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions." SIAM Journal on Scientific Computing, 31(2), 826-848.
- COS method for Fourier pricing
- Superior stability and accuracy
- Implementation:
src/neutryx/engines/fourier.py
-
Longstaff, F. A., & Schwartz, E. S. (2001). "Valuing American Options by Simulation: A Simple Least-Squares Approach." Review of Financial Studies, 14(1), 113-147.
- LSM algorithm for American option pricing
- Regression-based early exercise boundary
- Implementation:
src/neutryx/engines/longstaff_schwartz.py
-
Andersen, L. (2008). "Simple and Efficient Simulation of the Heston Stochastic Volatility Model." Journal of Computational Finance, 11(3), 1-42.
- QE (Quadratic-Exponential) scheme for Heston
- Avoids negative variance, maintains moments
- Implementation:
src/neutryx/models/heston.py:simulate()
-
Giles, M. B. (2008). "Multilevel Monte Carlo Path Simulation." Operations Research, 56(3), 607-617.
- MLMC for variance reduction
- Optimal allocation across refinement levels
- Implementation:
src/neutryx/engines/qmc.py
-
Broadie, M., & Glasserman, P. (1996). "Estimating Security Price Derivatives Using Simulation." Management Science, 42(2), 269-285.
- Pathwise derivative method for Greeks
- Likelihood ratio method
- Implementation:
src/neutryx/engines/pathwise.py
Variance Reduction¶
-
Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1999). "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path-Dependent Options." Mathematical Finance, 9(2), 117-152.
- Optimal importance sampling for rare events
- Stratified sampling strategies
- Implementation:
src/neutryx/engines/variance_reduction.py
-
Clewlow, L., & Carverhill, A. (1994). "On the Simulation of Contingent Claims." Journal of Derivatives, 2(2), 66-74.
- Control variate techniques
- Moment matching methods
- Implementation:
src/neutryx/engines/variance_reduction.py
Calibration¶
-
Cont, R., & Tankov, P. (2009). "Constant Proportion Portfolio Insurance in the Presence of Jumps in Asset Prices." Mathematical Finance, 19(3), 379-401.
- Calibration of jump-diffusion models to market data
- Regularization techniques for ill-posed problems
-
Guyon, J., & Henry-Labordère, P. (2014). Nonlinear Option Pricing. Chapman & Hall/CRC.
- Advanced calibration methods
- Particle method for SLV models
- Regularization and stability
PDE Methods¶
-
Wilmott, P., Howison, S., & Dewynne, J. (1995). The Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press.
- PDE formulation of option pricing
- Finite difference schemes
- Implementation:
src/neutryx/models/pde.py
-
Tavella, D., & Randall, C. (2000). Pricing Financial Instruments: The Finite Difference Method. Wiley.
- Crank-Nicolson and theta schemes
- American options with constraint
- Implementation:
src/neutryx/models/pde.py
Risk Management¶
-
Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). "Coherent Measures of Risk." Mathematical Finance, 9(3), 203-228.
- Axiomatic foundation of risk measures
- CVaR (Expected Shortfall) as coherent measure
-
Rockafellar, R. T., & Uryasev, S. (2000). "Optimization of Conditional Value-at-Risk." Journal of Risk, 2(3), 21-41.
- CVaR optimization techniques
- Portfolio risk management
- Implementation:
src/neutryx/valuations/risk_metrics.py
-
Kupiec, P. H. (1995). "Techniques for Verifying the Accuracy of Risk Measurement Models." Journal of Derivatives, 3(2), 73-84.
- VaR backtesting methodology
- Statistical tests for model validation
- Implementation:
src/neutryx/valuations/risk_metrics.py:backtest_var()
XVA and Counterparty Risk¶
-
Brigo, D., Morini, M., & Pallavicini, A. (2013). Counterparty Credit Risk, Collateral and Funding: With Pricing Cases for All Asset Classes. Wiley.
- CVA/DVA calculation methodology
- Collateral modeling, CSA agreements
- Implementation:
src/neutryx/valuations/xva/
-
Pykhtin, M., & Zhu, S. (2007). "A Guide to Modeling Counterparty Credit Risk." GARP Risk Review, July/August.
- EPE, PFE calculation
- Wrong-way risk modeling
- Implementation:
src/neutryx/valuations/exposure.py
-
ISDA SIMM Methodology (2021). "ISDA SIMM Methodology Version 2.4."
- Standard Initial Margin Model
- Risk weight calibration
- Implementation:
src/neutryx/valuations/margin/simm/
-
Albanese, C., & Andersen, L. (2014). "Accounting for OTC Derivatives: Funding Adjustments and the Re-Hypothecation Option." Risk Magazine, January.
- FVA (Funding Valuation Adjustment) theory
- Asymmetric funding costs
- Implementation:
src/neutryx/valuations/xva/fva.py
Review Articles and Surveys¶
-
Gatheral, J., Jaisson, T., & Rosenbaum, M. (2018). "Volatility is Rough." Quantitative Finance, 18(6), 933-949.
- Empirical evidence for rough volatility
- Fractional stochastic volatility models
-
Andersen, L., & Piterbarg, V. (2010). Interest Rate Modeling (3 volumes). Atlantic Financial Press.
- Comprehensive reference for rates derivatives
- LMM, cross-currency models, hybrid models
-
Rebonato, R. (2004). Volatility and Correlation: The Perfect Hedger and the Fox (2nd ed.). Wiley.
- Market models for interest rates
- Correlation modeling, copulas
Computational Methods¶
-
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). "JAX: Composable transformations of Python+NumPy programs." http://github.com/google/jax
- Automatic differentiation framework
- JIT compilation, GPU/TPU support
- Core technology: All Neutryx implementations
-
Sobol, I. M. (1967). "On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals." USSR Computational Mathematics and Mathematical Physics, 7(4), 86-112.
- Sobol sequences for quasi-Monte Carlo
- Implementation:
src/neutryx/engines/qmc.py
Industry Standards¶
-
FpML (Financial products Markup Language) Specification Version 5.12. http://www.fpml.org/
- Industry standard for derivatives representation
- Implementation:
src/neutryx/integrations/fpml/
-
Basel Committee on Banking Supervision (2019). "Minimum Capital Requirements for Market Risk."
- Regulatory framework for market risk
- Internal models approach, standardized approach
Additional References by Topic¶
Greeks and Sensitivities¶
- Haug, E. G. (2007). The Complete Guide to Option Pricing Formulas (2nd ed.). McGraw-Hill.
- Comprehensive collection of analytical formulas
- Greeks for various option types
- Implementation reference:
src/neutryx/valuations/greeks/
Path-Dependent Options¶
-
Curran, M. (1994). "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price." Management Science, 40(12), 1705-1711.
- Moment matching for Asian options
- Analytical approximations
-
Broadie, M., Glasserman, P., & Kou, S. G. (1997). "A Continuity Correction for Discrete Barrier Options." Mathematical Finance, 7(4), 325-349.
- Discrete monitoring bias correction
- Barrier option adjustments
Exotic Options¶
-
Lipton, A. (2001). Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach. World Scientific.
- FX options, quanto products
- Green's function approach
-
Zhang, P. G. (1998). Exotic Options: A Guide to Second Generation Options (2nd ed.). World Scientific.
- Comprehensive catalog of exotic products
- Pricing methodologies
Software and Tools References¶
-
QuantLib - Open-source library for quantitative finance. https://www.quantlib.org/
- Reference implementation for many models
- Industry standard C++ library
-
Weights & Biases - MLOps platform for experiment tracking. https://wandb.ai/
- Integration: Calibration tracking in
src/neutryx/calibration/
- Integration: Calibration tracking in
-
MLflow - Open-source platform for ML lifecycle. https://mlflow.org/
- Integration: Model versioning and tracking
Citation Style¶
Throughout this documentation, we reference papers using the format:
[Author(s), Year] - Brief description
Implementation:
file/path.py:function_name()
This links theoretical foundations to practical implementations in the Neutryx codebase.
Notes on Theoretical Rigor¶
The Neutryx implementation prioritizes:
- Mathematical Correctness: All models follow rigorous derivations from the cited literature
- Numerical Stability: Methods are chosen for robustness (e.g., QE scheme for Heston)
- Performance: JAX enables GPU acceleration while maintaining clarity
- Validation: Extensive test coverage against analytical solutions and benchmarks
See individual model documentation for detailed mathematical specifications and derivations.